Session: Blockchain Security

CCSW’17, November 3, 2017, Dallas, TX, USA

A Note on the Security of Equihash

Leo Alcock
Independent scholar
leo.c.alcock@gmail.com

ABSTRACT

Proof-of-work (PoW) has recently become the backbone of cryp-
tocurrencies. However, users with Application Specific Integrated
Circuits (ASICs) can produce PoW solutions at orders of magnitude
lower cost than typical CPU/GPU users. Memory-hard PoWs, i.e.,
PoW schemes that require a lot of memory to generate proofs, have
been proposed as a way to reduce the advantage of ASIC-equipped
users. Equihash is a recent memory-hard PoW proposal adopted by
the cryptocurrency Zcash. Its simplicity, compact proof size, and
tunable parameters make it a good candidate for practical proto-
cols. However, we find its security analysis and claims are flawed.
Most importantly, we refute Equihash’s claim that its security is
based on Wagner’s algorithm for the generalized birthday problem.
Furthermore, no tradeoff-resistance bound is known for Equihash,
and its analysis on the expected number of solution is incorrect.
Our findings do not expose any immediate threat to Equihash. The
main purpose of this short note is to raise awareness that Equihash
should be considered a heuristic scheme with no formally proven
security guarantees.

ACM Reference Format:

Leo Alcock and Ling Ren. 2017. A Note on the Security of Equihash. In
Proceedings of CCSW’17. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3140649.3140652

1 INTRODUCTION

Dwork and Naor proposed proof-of-work (PoW) [10] as a counter-
measure to spam and denial-of-service attacks. More recently, PoW
has been used extensively as the backbone of cryptocurrencies,
also known as blockchains. However, cryptocurrency miners soon
realized that Application Specific Integrated Circuits (ASICs) can
find PoW solutions orders of magnitude faster and more efficiently
than commodity CPUs/GPUs. At the time of writing, a state-of-
the-art ASIC Bitcoin miner [1] computes SHA256 hashes roughly
200,000 faster and 40,000x more energy efficiently than a state-
of-the-art multi-core CPU. The concentration of mining power
to ASIC-equipped miners calls into question the decentralization
promise of Bitcoin and other cryptocurrencies.

Memory-hard PoWs have been proposed as a promising way
to address the above challenge. These PoW schemes require a lot
of memory to find solutions efficiently. The reasoning behind this
line of work is that since RAMs and storage devices are inherently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCSW’17, November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5204-8/17/11...$15.00
https://doi.org/10.1145/3140649.3140652

51

Ling Ren
Massachusetts Institute of Technology
renling@mit.edu

general-purpose, use of memory should narrow the efficiency gap
between ASICs and commodity CPUs/GPUs.

Memory-hard PoW schemes fall into two broad categories based
on the memory consumption in verification. If a scheme requires
roughly the same amount of memory to find a solution and to verify
a solution, then the scheme is called a symmetric memory-hard PoW,
or a memory-hard function (e.g., scrypt [14]). If a scheme requires
significantly less memory to verify a solution than to find a solution,
then the scheme is called an asymmetric memory-hard PoW. This
paper focuses on asymmetric schemes. For cryptocurrencies, asym-
metric schemes are superior, and perhaps even necessary, since
verification delay will be incurred at every hop in the peer-to-peer
network.

The security guarantees that we require from memory-hard PoW
schemes are space-time trade-off resistance: i.e., if an adversary
wishes to save space by a factor of ¢ when generating a proof, then
it must incur a runtime penalty of Q(g). The larger the runtime
penalty is, the better security (trade-off resistance) a scheme pro-
vides. Memory-hard PoW schemes can then be divided into two
classes based on whether or not a scheme has a rigorous security
(trade-off resistance) proof.

Before we proceed, we need to clarify what we consider as rig-
orous. As is always the case in cryptography, no security proof is
absolute truth. A proof always relies on some assumptions (e.g.,
hardness of factoring). We say a scheme has a rigorous proof if
its security has been reduced to some well-established or well-
understood assumptions. On the other hand, we say a scheme has
no rigorous proof (yet) if we cannot (yet) reduce its security to
any clearly stated assumption other than the degenerate one that
simply asserts “the scheme is secure”. We call a scheme with no
rigorous proof a heuristic scheme.

If all other factors are equal, one would prefer a rigorous scheme
over a heuristic one. Many heuristic schemes have been found
vulnerable to space-time trade-offs or other attacks [3, 4, 16]. But
heuristic schemes are often simpler, more efficient, or have other
nice properties that may justify their uses in practical protocols.
Also, lack of formal proof does not always mean inferior security
(though it often does). The renowned RSA public-key encryption
algorithm does not have a security proof, but that does not prevent
it from making a tremendous impact. In fact, since RSA has stood
the test of time, it is now quite reasonable to consider “hardness of
RSA” a well-established assumption and reduce other schemes to it.

Among existing asymmetric memory-hard PoW proposals:

o Cuckoo Cycle [16] is a heuristic scheme and is clearly stated as
such.

e Momentum [13], Dagger, Ethash [3] and MTP [11] are heuristic
schemes. Although their design documents avoid explicitly ad-
mitting so, this should be obvious since the design documents
never attempted any formal proofs.

Session: Blockchain Security

e A few proposals broadly named “proofs of space” [5, 15] have
rigorous security proofs under the random oracle assumption [6]
and the graph pebbling framework.

e Equihash [7] is a promising proposal and is adopted in Zcash.
However, there seems to be some confusion and misunderstand-
ings on whether it is a rigorous scheme or a heuristic one.

In this paper, we study the security proofs/arguments of Equihash
and conclude it is a heuristic scheme.

The Equihash paper [7] claims that its security is based on a hard
problem, i.e., Wagner’s Generalized Birthday Problem (GBP) [17].
However, we notice that the Equihash problem formulation has a
subtle yet crucial difference from Wagner’s GBP [17]. As a result,
the Equihash algorithm is also quite different from Wagner’s algo-
rithm [17]. While the difference may appear minor at the first glance,
we have seen many examples where seemingly minor changes in
problem description drastically affects its complexity class, e.g.,
Euler tour vs. Hamiltonian cycle, 3SAT vs. 2SAT, just to name a
few [8]. In fact, we have already known optimizations that apply
to Equihash but not to Wagner’s GBP, or vice versa. We will also
explain how these misunderstandings have led to a suboptimal
parameter choice by Zcash.

At the time of writing, we do not know any trade-off resistance
bound for Equihash. The Equihash paper presented and proved
several propositions that looked like space-time trade-off resistance
analysis. However, these propositions are all in the wrong direction:
they gave upper bounds on an adversary’s runtime penalty instead
of lower bounds. In other words, they give examples of, rather than
rule out, what an adversary is capable of. The Equihash designers
probably find these propositions useful in ruling out bad parameters,
but they add no value to formally reasoning security and should
not be confused with trade-off resistance bounds.

While we refute Equihash’s security analysis and arguments,
we are not advising for or against its use in practical protocols.
Our findings do not break Equihash. They simply mean that the
security of Equihash, at the moment, cannot be reduced to any
well-established assumption, and instead relies on the 2-year old
degenerate assumption that “Equihash is secure”. It is certainly a
possibility that this degenerate assumption stands the test of time
and becomes trustworthy. But we do believe it is important for
practitioners who adopt Equihash to understand precisely what
security assumptions they are relying on.

We then describe a scheme that is indeed based on Wagner’s
GBP. But we will not consider this new scheme rigorous either, as
we find the general philosophy of “basing PoW security on hard
problems” itself dubious.

The rest of the paper is organized as follows. Section 2 gives
background on Wagner’s GBP and Equihash. Section 3 revisits the
security analysis, arguments and claims of Equihash. Section 4
describes a scheme based on Wagner’s GBP. Section 5 discusses our
take on basing PoW security on hard problems. Section 6 concludes.

2 BACKGROUND

Wagner’s Generalized Birthday Problem (GBP). Wagner de-
fined the generalized birthday problem as follows [17]: Given 2k
lists L1, . ..,Lyx containing (pseudo)-random n-bit strings, find one
element from each list x; € L; such that ®;x; = 0.

52

CCSW’17, November 3, 2017, Dallas, TX, USA

Wagner’s algorithm. Wagner introduced an iterative collision
search algorithm to solve the above problem. The algorithm per-
forms a join operation in a tree of depth k. The 2k original lists
are placed at the 2K leaves of the tree. Each join operation takes
two sibling lists and produces an output list at their parent node in
the tree; elements in the output list have the next batch of £ bits
canceled out compared to elements in the input lists. The last join
operation cancels out the remaining % bits, so elements in the
list at the root of the tree are solutions to the above GBP.

The join operation. The join operation is the central subroutine
used in both Wagner’s algorithm and Equihash’s algorithm. The
join operation finds partial solutions, i.e., a set of elements that
cancel out a subset of bits. It takes as input two lists L and L” each
containing entries in the format of (x,), where x is the remaining
partial bitstring to be canceled out, and « is the set of indices in
the partial solution found so far. We refer to the two components
in the entries bitstrings and index sets, respectively. Entries in the
2k original input lists only contains bitstrings, and have to be aug-
mented with their offsets in their respective lists. The join(L,L’, B)
operation then checks all pairs (x,2) € L, (x’,a’) € L’, and if
x @ x’ cancels out the next batch of B bits, then it adds a new entry
(x®x’,a || a’) to the output list, where || represents concatenation.
We give an example of Wagner’s algorithm using 4 lists L1, L3, L3, Ly
(k = 2). First, place the 4 lists at the leaves a tree of depth 2. Then, ob-
tain two lists at the two intermediate nodes: L1 2 = join(Li, Lo, %)
L3 4 = join(L3, L4, 2). After this step, every element in Ly 2 or L3 4
has its first n/3 bits zeroed out. Finally, L 2 3.4 = join(L1,2,L3,4, 2?")
consists of tuples that are solutions to GBP with 4-lists.

Prior analysis of Wagner’s algorithm. A particularly interest-
ing case in Wagner’s algorithm is when each input list has size
ILi| == N = 271, 1 < i < 2K, In this case, the expected size of
each intermediate list is preserved at N2 - 27 %1 = N. The expected
number of solutions, which is also the expected size of the list at

the root, is N2 - 2 Fh =1 (recall that the last join cancels % bits).

The join operation can be implemented by grouping elements
with identical first B bits together, which can be done by sorting or
with a hash table. In the case of N = 27+, the join operation when
implemented using a hash table has an expected time complexity
of ©(N). If the join operations are carried out level by level in the
tree, the maximum memory occurs when at height 1, i.e., the level
above the leaves. Wagner proposed a space optimization that carries
out join operations in a postfix order. But his analysis adopted an
oversimplified space model [17]. In Section 4.2, we will give more
accurate analysis to these variants.

Equihash. Biryukov and Khovratovich introduced the Equihash
PoW scheme which is claimed to be based on Wagner’s GBP [7].
However, they defined GBP differently: Given a list L of (pseudo-
)random n-bit strings, find 2k distinct elements x; in L such that
®;x; = 0. Notice the crucial difference that Equihash involves only
one list rather than 2 lists in Wagner’s version.

Equihash’s algorithm. Due to the difference in problem defini-
tion, Equihash’s algorithm is also very different from Wagner’s algo-
rithm. It also performs join operations iteratively, but no longer in

Session: Blockchain Security

a tree fashion. Instead, each step of the Equihash algorithm is a self-
join on a single list. Augment each element in the input list L with
its offset in L, and denote the augmented list as L) The first k — 1
steps of the Equihash algorithm computes LW = join(L(O), ﬁ)
L® = join(LW,), -+, L*=D = join(Lk=2), 2-) In the last
step, compute Lk = join(L(k’l), %) and elements in LK) are
solutions to the Equihash’s version of GBP.

The self-join operation join(L, B) checks all pairs in the input
list L, i.e., (x1,1), (x2,a2) € L, and if and if x; & x, cancels out the
next batch of B bits and that a3 N @z = @, then it adds a new entry
(x1 @ x2,a1 U @) into the output list. The pairs are unordered, i.e.,
(x1 ® x2,01 U 2) and (x2 & x1,2 U a1) are the same element and
is added only once.

Prior analysis of Equihash. Equihash sets the initial list size at
IL| = 2N = 2. 2%+, Following a similar argument to Wagner’s,
it was argued that this would preserve the expected list size at
intermediate steps, and produces 2 final solutions in expectation.
However, Section 3.1 shows this is not the case. In fact, under
certain parameter settings recommended by Equihash, the expected
number of solutions can be orders of magnitude smaller than 2.

The Equihash paper [7] measures time complexity in n-bit word
operations and measures space complexity in bits. We follow this
convention. The algorithm presented in the Equihash paper [7]
takes ©(kN) time and ©((2% + n)N) space. An improvement that
reduces space usage is later found by the Equihash designers and
Zcash miners [2] independently. We call this improvement index
pointers. We will give a simple analysis in Section 3.2 to show
that index pointers reduce Equihash’s space complexity to @(nN).
The Equihash paper also suggested an optimization called “index
trimming”. In Section 3.2 and Section 4.2, we discuss its interactions
with Wagner’s GBP, Equihash and index pointers.

Equihash also introduced a technique called “algorithm bind-
ing” to prevent many optimizations such as the ones outlined by
Kirchner [12]. In short, a PoW solution is considered valid only if it
carries the footprint of the iterative partial collisions, i.e, at step j,
the first % bits should XOR to 0. We believe algorithm binding
is a great tool for PoW designs since it significantly reduces the
attack vector. But we note in Section 5 that it is contradictory to
Equihash’s philosophy of “basing security on hard problems”, a
logic we do not find sound.

3 ANALYSIS OF EQUIHASH

The Equihash paper [7] claimed that an Equihash puzzle is an in-
stance of Wagner’s GBP, and the best algorithm to find a PoW
solution is an improved version of Wagner’s algorithm proposed in
2002 [17]. In Section 2, we have already pointed that the Equihash
problem is different from Wagner’s GBP and problems that look
similar may have drastically different complexities. In this section,
we first elaborate on a central difference between the two problems
in Section 3.1. We then provide further evidence against claiming
security based on the two problems’ similarities by showing algo-
rithmic improvements that apply to one problem but not the other
Section 3.2.

53

CCSW’17, November 3, 2017, Dallas, TX, USA

3.1 Index Set Intersection

An central issue overlooked in the Equihash paper [7] is index set
intersection. Here, the change from 2* lists to a single list plays an
important role. Recall from Section 2 that the self join operation
in Equihash must check for index set intersection, i.e., a1 N az = @,
before adding a new entry to the output list. At any step in the
Equihash algorithm, if a pair of entries share an index in their index
sets, this pair must be thrown out even if their next ﬁ bits collide.

This is because the problem (rightly so) asks for 2k distinct elements
from L, so the same element cannot be included twice.

Expected number of solutions. An immediate consequence of
index set intersection is that Equihash’s claim of 2 solutions in
expectation is incorrect. Wagner’s calculation for list size assumes
independence between entries to be joined. This holds in Wagner’s
GBP because the two entries are always formed from separate lists.
In Equihash’s case, entries in an intermediate list are correlated
if they share common indices. As k increases, the likelihood of
a pair of entries sharing indices also increases, and the expected
number of solutions deviates further from 2. The precise formula for
Equihash’s expected number of solutions is derived by [9]. For the
parameter choice in Zcash (n,k) = (200,9), the expected number
of solutions is 1.879, which luckily is not too far from 2. But for
certain parameter choices, the expected number of solutions can be
orders of magnitude smaller than 2. For example, (n,k) = (192,11),
which is among the recommended parameter settings by Equihash,
yields 2.1 x 1077 solutions in expectation. Had Zcash chosen this
parameter setting, the actual PoW difficulty would have been orders
of magnitude higher than intended.

3.2 Index Pointers and Index Trimming

Index pointers. The index pointer trick [2] is a clever way to
store index sets. Recall that in the original Equihash algorithm in
Section 2 and [7], each entry in an intermediate list stores a set of
indices. The idea of index pointers is that, instead of storing the
entire index set a1 U arg, each entry in L stores two pointers to
the two source entries in the previous list LD The full index set
can be recovered recursively by tracing the pointers all the way to
L) This way, the memory space for storing indices grows linearly
in k, rather than exponentially. Below, we show that index pointers
reduce Equihash space complexity from O((2F + n)N) to ©(nN).

Space reduction from index pointers. We will focus on “good”
parameter settings for Equihash in which the list size remains rela-
tively stable at around 2N. Let us consider the space consumption
of index pointers and bitstrings separately. Each pointer takes up

log,(2N) ~ 1 + £ bits. In step h, each entry only needs to store

the remaining n — k"—fl bits of the bitstring (the first k"—fl have been
canceled out and do not need to be stored). Further observe that
once we obtain L(i), the bitstrings in L1 canbe discarded, but the
index pointers in L1 are still needed. Therefore, after each step,
we need about 2(# + 1)N bits to store the extra pointers, but the
space taken up by the bitstrings drops by £ N bits. Overall, the
total space usage increases by (ﬁ + 2)N after each step. Initially,
the space usage is nN, so the maximum space usage during the
algorithm occurs at the end, and is roughly 2nN.

Session: Blockchain Security

Implication for parameter choices. The discovery of the index
pointer technique has a big impact on the choices of Equihash pa-
rameters. For any PoW scheme, we naturally would like to increase
the required space usage (for ASIC resistance) while keeping the
runtime low. A quantity that captures this intuition is the time-space
ratio T/S. Equihash without index pointers has T/S = ©(k/ (2K +n)).
Thus, a larger k helps decrease T/S. The Zcash project chose and
committed to (n,k) = (200,9) before the discovery of index point-
ers. Note that a larger k increases the proof size and verification
time. Thus, the only reason to choose a larger k is to increase the
space usage while keeping runtime low, or equivalently, reducing
T/S (regardless of whether the Zcash team examined this metric
explicitly). In hindsight, this is almost certainly a mistake. Index
pointers reduce the space complexity to ©(nN), so T/S = ©(k/n).
Now a larger k hurts every metric, T/S included.

Index pointers and Wagner’s algorithm. While the index pointer

technique can also be used in Wagner’s algorithm, it does not save

space. Storing full index sets in a list at level h in the tree takes
n

2h 741V bits. Storing index pointers for all the 2 lists in its subtree

also takes 2" 747 N bits. Another way to understand the distinction
is to notice that in Wagner’s GBP, each index in an index set comes
from a different list, meaning that the pointers would always trace
back to independent entries. Thus, pointers do not save space over
full index sets.

Index trimming,. Index trimming refers to the technique of storing
only a fraction of bits for each index. The Equihash paper credited
this idea to Kirchner [12], though we could not find any mention
of it in [12]. Regardless of its origin, index trimming is an effective
technique to reduce space complexity of Wagner’s algorithm. We
will provide more details on the use and analysis of index trimming
in Wagner’s algorithm in Section 4.2. For now, we consider index
trimming for Equihash. Contrary to the claims in the Equihash
paper [7], we find it unclear how index trimming would work
with Equihash. The first challenge is once again related to index
set intersection. If indices are trimmed, there is no clear method
of detecting possible index set intersections. Furthermore, in the
second pass, there is no clear way to keep working with a single list.
Instead, if we switch to Wagner’s algorithm by replicating the list
2K times (suggested in [7]), the space and time complexities of the
second pass may even exceed the first pass, because the first pass
can use index pointers while the second pass cannot. The index
pointer technique will save much more space than index trimming
and the two methods seem incompatible.

4 A POW BASED ON WAGNER’S GBP

In this section, we discuss and analyze a PoW scheme that adopts
Wagner’s version of GBP and Wagner’s algorithm. Compared to
Equihash, it has no obvious pros and cons except that it is related
to the 15-year Wagner’s GBP rather than the 2-year Equihash GBP.
Note that we state that the scheme is related to Wagner’s GBP rather
than claiming security based on it. In Section 5, we explain that the
assumptions PoW schemes need are not conventional “polynomial
time” hardness assumptions, but rather the much stronger “exact
complexity” assumptions.

54

CCSW’17, November 3, 2017, Dallas, TX, USA

4.1 Description of the Scheme

The scheme applies Equihash’s algorithm binding idea to Wagner’s
GBP formulation. The input is 2k lists L1,La,- -+ ,Lyk, each of size
N =271, of pseudorandom n-bit strings. A valid solution of the
,Xyk) (x; € L;) that carries the

scheme is a 2k-tuple (x1,x2,-
collision schedule of Wagner’s algorithm, i.e., Yu,h, x,,5n
X0k o cancels out the first kn_fl bits.

Since indices in Wagner’s algorithm correspond to entries in
separate lists, there is no notion of index set intersection. This also
means the two entries to be merged are independent. The expected
list size in Wagner’s algorithm is thus invariant under parameters

+1

N =27+ and the expected number of solutions is 1.

4.2 Analysis of Wagner’s Algorithm

Postfix order. Recall from Section 2 that Wagner’s algorithm has a
tree structure. Once the two lists are joined into a list at the parent
node, the two lists at the child nodes can be deleted. If one performs
join operations level by level in the tree, then the maximum space
usage occurs towards the leaf level, and the space complexity is
©(2KnN). But this is not the most space-efficient algorithm. Wagner
proposed evaluating the join operations in postfix order [17]. In
other words, we prioritize join operations that are close to the root
and perform them as soon as the two input lists are ready. This
way, instead of having 0(2%) in memory, there are at most O(k)
lists in memory at any time.

When analyzing space complexity, Wagner assumed that each
entry takes O(1) space, and concluded that the space complexity
under postfix order is ©(kN) [17]. We note that the entry sizes
vary a lot based on their heights in the tree as the index sets double
while the bitstrings shrink after each join operation. Below, we
provide a more accurate space complexity analysis.

First, observe that the expected space consumption of a list out-
put by a join operation is strictly less than the sum of the two input
lists, i.e., Mem(join(L,L")) < Mem(L) + Mem(L’). To prove this,
simply note that (1) an index set in join(L,L’) is twice as large as
an index set in L or L', (2) a bitstring in join(L,L’) is shorter than a
bitstring in L or L, and (3) in expectation |join(L,L’)| = |L| + |L’|.
As a result, the maximum space usage in postfix order Wagner’s
algorithm occurs just before the last two leaf lists are joined, at
which time there are k lists in memory, one at each height. For a list
at height h in the tree, its index set has #2}’ bits and its bitstring

has n — k"—fl bits. Summing over all the lists, we get the memory

complexity of postfix Wagner’s algorithm
Son nh
h
NY |—2lh4n- —
hz‘a (k +1 "k

Index Trimming. A good strategy is to trim each index all the way
down to 1 bit for maximum space savings. With index trimming, we
essentially run Wagner’s algorithm twice. In the first pass, we store
only the first bit of each index (so each index takes up only 1 bit as
opposed to ﬁ bits). The output of this algorithm is the first bits

- @((%zk + nk)N).

of 2K indices that correspond to a solution of Wagner’s GBP. Then,
one would run Wagner’s algorithm for a second pass to retrieve
the full indices in the solution. In the second pass, we only consider

Session: Blockchain Security

y)

400 -

bits/entr

(

10 . 20 30
Join Number

Figure 1: Memory consumption over time of Wagner’s post-
fix order algorithm with (n,k) = (120,5).

entries whose first index bits match the valid solution found by the
first pass. Thus, the input lists (at the leaves) have size N/2. This
way, the expected size of intermediate lists decrease exponentially
with their heights in the tree. Thus, the time and space complexity
of the second pass are insignificant compared to the first pass. To
compute the space complexity after applying index trimming, we

simply replace the full index size 5 with 1 in the sum.

Nk_l h mh) 2 o2k + nk)N
Z(z +n—ﬁ)— (2% + nk)N).

Memory consumption over time. The memory consumption of
postfix order Wagner’s algorithm with index trimming fluctuates a
lot over time. To give a more intuitive understanding, we plot in
Figure 1 the memory consumption of postfix order Wagner’s algo-
rithm with index trimming for (n,k) = (120,5). This configuration
gives similar maximum space usage with Zcash’s configuration
of (200,9) with Equihash. As a comparison, Equihash’s memory
consumption would simply be a straight line between minimum
and maximum space usage (cf. Section 3.2).

Time-space ratio. For completeness, we mention that the time-
space ratio of Wagner’s algorithm (the best version known to date)
isT/S = @(2’</(2’< +nk)). When k is not too large, this is comparable
to Equihash’s time-space ratio ©(k/n). In either scheme, k needs to
be moderately large (around 4 or 5) to thwart time-space trade-off
attacks, but there is little reason to choose k much larger than that
as it hurts every efficiency metric.

5 SECURITY ASSUMPTIONS OF POW

In this section, we discuss the security assumptions that PoW
schemes rely on. In previous sections, we argued that Equihash’s
security has only been examined for 2 years, while the scheme in
Section 4 traces back to the 15-year old Wagner’s GBP. However,
we still consider both to be heuristic schemes, not based on the
duration of 2 or 15 years, but rather because we do not see a good
argument for basing PoW security on hard problems to begin with.

First and foremost, the type of assumptions PoW schemes require
are very different from traditional hardness assumptions. Using
factoring as an example, a traditional hardness assumption states:
“there exists no probabilistic polynomial time algorithm for fac-
toring”. A cryptographic primitive relying on the above hardness

55

CCSW’17, November 3, 2017, Dallas, TX, USA

assumption will remain secure even if a polynomial-factor improve-
ment is later found for factoring. In contrast, a PoW scheme needs
an assumption on the precise complexity of a problem, e.g., “the
best algorithm known to date for problem X is indeed the best pos-
sible algorithm for problem X”. This is clearly much stronger than
a “polynomial time” hardness assumption. And any algorithmic
improvement (even a sublinear or logarithmic one) to problem X
constitutes a break for the PoW scheme. Therefore, strictly speaking,
the discovery of the index pointer technique has already rendered
Equihash broken once.

Also note that there is no reason to require problem X to be hard
(e.g., super polynomial). In fact, the Equihash paper has mentioned
a naive construction that relies on a hard problem but turns out to
be insecure. It then introduces the nice idea of algorithm binding,
which improves security by constraining the Equihash puzzle. This
turned the puzzle into an easy problem with a quasi-linear solution.
Indeed, PoW schemes ideally want PoWs with matching (or close)
upper and lower bounds. Hard problems are usually the opposite
given our limited understanding of them. Thus, it should not be
surprising that a PoW scheme achieves better security by avoiding
hard problems or turning them into easier problems.

6 CONCLUSION

In this paper, we revisited the security claims and arguments of
Equihash. We explained that Equihash’s security does not follow
from Wagner’s GBP and remarked on the limitations of the general
idea of basing PoW security on hard problems. Overall, we still find
Equihash to be a simple and elegant memory-hard PoW heuristic
scheme, and still consider it a good choice for practical protocols.
But we believe it is important to be aware of its heuristic security.
If provable memory hardness is desired, then one may want to look
into proof of space protocols instead.

REFERENCES

[1] Antminer S9. Bitmain, https://shop.bitmain.com/market.htm?name=antminer_
s9_asic_bitcoin_miner. Accessed: 2017-02-04.

[2] Equihash-xenon. https://github.com/xenoncat/equihash-xenon.

[3] Ethash. https://github.com/ethereum/wiki/wiki/Ethash. Accessed: 2017-08-04.

[4] David G. Andersen. Exploiting time-memory tradeoffs in cuckoo cycle, 2014. (Ac-
cessed August 2016) https://www.cs.cmu.edu/ dga/crypto/cuckoo/analysis.pdf.

[5] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of
space: when space is of the essence. In Security and Cryptography for Networks,
pages 538-557. Springer, 2014.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62-73. ACM, 1993.

[7] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric proof-of-work
based on the generalized birthday problem. In NDSS, 2016.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[9] Srinivas Devadas, Ling Ren, and Hanshen Xiao. On iterative collision search for

Ipn and subset sum. In Theory of Cryptography. Springer, 2017.

Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.

In Advances in Cryptology—CRYPTO 1992, pages 139-147. Springer, 1992.

Alex Biryukov Dmitry Khovratovich. Egalitarian computing. In NDSS, 2016.

] Paul Kirchner. Improved generalized birthday attack, 2011.

Daniel Larimer. Momentum: a memory-hard proof-of-work via finding birthday

collisions.

Colin Percival. Stronger key derivation via sequential memory-hard functions,

2009.

Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory

of Cryptography, pages 262-285. Springer, 2016.

John Tromp. Cuckoo cycle: a memory-hard proof-of-work system, 2014.

] David Wagner. A generalized birthday problem. In Annual International Cryptol-

ogy Conference, pages 288-304. Springer, 2002.

