
A Note on the Security of Equihash

Leo Alcock
Independent scholar

leo.c.alcock@gmail.com

Ling Ren
Massachusetts Institute of Technology

renling@mit.edu

ABSTRACT

Proof-of-work (PoW) has recently become the backbone of cryp-

tocurrencies. However, users with Application Speci�c Integrated

Circuits (ASICs) can produce PoW solutions at orders of magnitude

lower cost than typical CPU/GPU users. Memory-hard PoWs, i.e.,

PoW schemes that require a lot of memory to generate proofs, have

been proposed as a way to reduce the advantage of ASIC-equipped

users. Equihash is a recent memory-hard PoW proposal adopted by

the cryptocurrency Zcash. Its simplicity, compact proof size, and

tunable parameters make it a good candidate for practical proto-

cols. However, we �nd its security analysis and claims are �awed.

Most importantly, we refute Equihash’s claim that its security is

based on Wagner’s algorithm for the generalized birthday problem.

Furthermore, no tradeo�-resistance bound is known for Equihash,

and its analysis on the expected number of solution is incorrect.

Our �ndings do not expose any immediate threat to Equihash. The

main purpose of this short note is to raise awareness that Equihash

should be considered a heuristic scheme with no formally proven

security guarantees.

ACM Reference Format:

Leo Alcock and Ling Ren. 2017. A Note on the Security of Equihash. In

Proceedings of CCSW’17. ACM, New York, NY, USA, 5 pages. https://doi.org/

10.1145/3140649.3140652

1 INTRODUCTION

Dwork and Naor proposed proof-of-work (PoW) [10] as a counter-

measure to spam and denial-of-service attacks. More recently, PoW

has been used extensively as the backbone of cryptocurrencies,

also known as blockchains. However, cryptocurrency miners soon

realized that Application Speci�c Integrated Circuits (ASICs) can

�nd PoW solutions orders of magnitude faster and more e�ciently

than commodity CPUs/GPUs. At the time of writing, a state-of-

the-art ASIC Bitcoin miner [1] computes SHA256 hashes roughly

200,000× faster and 40,000× more energy e�ciently than a state-

of-the-art multi-core CPU. The concentration of mining power

to ASIC-equipped miners calls into question the decentralization

promise of Bitcoin and other cryptocurrencies.

Memory-hard PoWs have been proposed as a promising way

to address the above challenge. These PoW schemes require a lot

of memory to �nd solutions e�ciently. The reasoning behind this

line of work is that since RAMs and storage devices are inherently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

CCSW’17, November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5204-8/17/11. . . $15.00
https://doi.org/10.1145/3140649.3140652

general-purpose, use of memory should narrow the e�ciency gap

between ASICs and commodity CPUs/GPUs.

Memory-hard PoW schemes fall into two broad categories based

on the memory consumption in veri�cation. If a scheme requires

roughly the same amount of memory to �nd a solution and to verify

a solution, then the scheme is called a symmetricmemory-hard PoW,

or a memory-hard function (e.g., scrypt [14]). If a scheme requires

signi�cantly less memory to verify a solution than to �nd a solution,

then the scheme is called an asymmetric memory-hard PoW. This

paper focuses on asymmetric schemes. For cryptocurrencies, asym-

metric schemes are superior, and perhaps even necessary, since

veri�cation delay will be incurred at every hop in the peer-to-peer

network.

The security guarantees that we require frommemory-hard PoW

schemes are space-time trade-o� resistance: i.e., if an adversary

wishes to save space by a factor of q when generating a proof, then

it must incur a runtime penalty of Ω(q). The larger the runtime

penalty is, the better security (trade-o� resistance) a scheme pro-

vides. Memory-hard PoW schemes can then be divided into two

classes based on whether or not a scheme has a rigorous security

(trade-o� resistance) proof.

Before we proceed, we need to clarify what we consider as rig-

orous. As is always the case in cryptography, no security proof is

absolute truth. A proof always relies on some assumptions (e.g.,

hardness of factoring). We say a scheme has a rigorous proof if

its security has been reduced to some well-established or well-

understood assumptions. On the other hand, we say a scheme has

no rigorous proof (yet) if we cannot (yet) reduce its security to

any clearly stated assumption other than the degenerate one that

simply asserts “the scheme is secure”. We call a scheme with no

rigorous proof a heuristic scheme.

If all other factors are equal, one would prefer a rigorous scheme

over a heuristic one. Many heuristic schemes have been found

vulnerable to space-time trade-o�s or other attacks [3, 4, 16]. But

heuristic schemes are often simpler, more e�cient, or have other

nice properties that may justify their uses in practical protocols.

Also, lack of formal proof does not always mean inferior security

(though it often does). The renowned RSA public-key encryption

algorithm does not have a security proof, but that does not prevent

it from making a tremendous impact. In fact, since RSA has stood

the test of time, it is now quite reasonable to consider “hardness of

RSA” a well-established assumption and reduce other schemes to it.

Among existing asymmetric memory-hard PoW proposals:

• Cuckoo Cycle [16] is a heuristic scheme and is clearly stated as

such.

• Momentum [13], Dagger, Ethash [3] and MTP [11] are heuristic

schemes. Although their design documents avoid explicitly ad-

mitting so, this should be obvious since the design documents

never attempted any formal proofs.

Session: Blockchain Security CCSW’17, November 3, 2017, Dallas, TX, USA

51

• A few proposals broadly named “proofs of space” [5, 15] have

rigorous security proofs under the random oracle assumption [6]

and the graph pebbling framework.

• Equihash [7] is a promising proposal and is adopted in Zcash.

However, there seems to be some confusion and misunderstand-

ings on whether it is a rigorous scheme or a heuristic one.

In this paper, we study the security proofs/arguments of Equihash

and conclude it is a heuristic scheme.

The Equihash paper [7] claims that its security is based on a hard

problem, i.e., Wagner’s Generalized Birthday Problem (GBP) [17].

However, we notice that the Equihash problem formulation has a

subtle yet crucial di�erence from Wagner’s GBP [17]. As a result,

the Equihash algorithm is also quite di�erent from Wagner’s algo-

rithm [17].While the di�erencemay appearminor at the �rst glance,

we have seen many examples where seemingly minor changes in

problem description drastically a�ects its complexity class, e.g.,

Euler tour vs. Hamiltonian cycle, 3SAT vs. 2SAT, just to name a

few [8]. In fact, we have already known optimizations that apply

to Equihash but not to Wagner’s GBP, or vice versa. We will also

explain how these misunderstandings have led to a suboptimal

parameter choice by Zcash.

At the time of writing, we do not know any trade-o� resistance

bound for Equihash. The Equihash paper presented and proved

several propositions that looked like space-time trade-o� resistance

analysis. However, these propositions are all in the wrong direction:

they gave upper bounds on an adversary’s runtime penalty instead

of lower bounds. In other words, they give examples of, rather than

rule out, what an adversary is capable of. The Equihash designers

probably �nd these propositions useful in ruling out bad parameters,

but they add no value to formally reasoning security and should

not be confused with trade-o� resistance bounds.

While we refute Equihash’s security analysis and arguments,

we are not advising for or against its use in practical protocols.

Our �ndings do not break Equihash. They simply mean that the

security of Equihash, at the moment, cannot be reduced to any

well-established assumption, and instead relies on the 2-year old

degenerate assumption that “Equihash is secure”. It is certainly a

possibility that this degenerate assumption stands the test of time

and becomes trustworthy. But we do believe it is important for

practitioners who adopt Equihash to understand precisely what

security assumptions they are relying on.

We then describe a scheme that is indeed based on Wagner’s

GBP. But we will not consider this new scheme rigorous either, as

we �nd the general philosophy of “basing PoW security on hard

problems” itself dubious.

The rest of the paper is organized as follows. Section 2 gives

background on Wagner’s GBP and Equihash. Section 3 revisits the

security analysis, arguments and claims of Equihash. Section 4

describes a scheme based on Wagner’s GBP. Section 5 discusses our

take on basing PoW security on hard problems. Section 6 concludes.

2 BACKGROUND

Wagner’s Generalized Birthday Problem (GBP). Wagner de-

�ned the generalized birthday problem as follows [17]: Given 2k

lists L1, . . . ,L2k containing (pseudo)-random n-bit strings, �nd one

element from each list xi ∈ Li such that ⊕ixi = 0.

Wagner’s algorithm. Wagner introduced an iterative collision

search algorithm to solve the above problem. The algorithm per-

forms a join operation in a tree of depth k . The 2k original lists

are placed at the 2k leaves of the tree. Each join operation takes

two sibling lists and produces an output list at their parent node in

the tree; elements in the output list have the next batch of n
k+1

bits

canceled out compared to elements in the input lists. The last join

operation cancels out the remaining 2n
k+1

bits, so elements in the

list at the root of the tree are solutions to the above GBP.

The join operation. The join operation is the central subroutine

used in both Wagner’s algorithm and Equihash’s algorithm. The

join operation �nds partial solutions, i.e., a set of elements that

cancel out a subset of bits. It takes as input two lists L and L′ each

containing entries in the format of (x ,α), where x is the remaining

partial bitstring to be canceled out, and α is the set of indices in

the partial solution found so far. We refer to the two components

in the entries bitstrings and index sets, respectively. Entries in the

2k original input lists only contains bitstrings, and have to be aug-

mented with their o�sets in their respective lists. The join(L,L′,B)

operation then checks all pairs (x ,α) ∈ L, (x ′,α ′) ∈ L′, and if

x ⊕ x ′ cancels out the next batch of B bits, then it adds a new entry

(x ⊕x ′,α | | α ′) to the output list, where | | represents concatenation.

We give an example ofWagner’s algorithmusing 4 listsL1,L2,L3,L4
(k = 2). First, place the 4 lists at the leaves a tree of depth 2. Then, ob-

tain two lists at the two intermediate nodes: L1,2 = join(L1,L2,
n
3),

L3,4 = join(L3,L4,
n
3). After this step, every element in L1,2 or L3,4

has its �rstn/3 bits zeroed out. Finally, L1,2,3,4 = join(L1,2,L3,4,
2n
3)

consists of tuples that are solutions to GBP with 4-lists.

Prior analysis of Wagner’s algorithm. A particularly interest-

ing case in Wagner’s algorithm is when each input list has size

|Li | := N = 2
n

k+1 , 1 ≤ i ≤ 2k . In this case, the expected size of

each intermediate list is preserved at N 2 · 2−
n

k+1 = N . The expected

number of solutions, which is also the expected size of the list at

the root, is N 2 · 2−
2n
k+1 = 1 (recall that the last join cancels 2n

k+1
bits).

The join operation can be implemented by grouping elements

with identical �rst B bits together, which can be done by sorting or

with a hash table. In the case of N = 2
n

k+1 , the join operation when

implemented using a hash table has an expected time complexity

of Θ(N). If the join operations are carried out level by level in the

tree, the maximum memory occurs when at height 1, i.e., the level

above the leaves.Wagner proposed a space optimization that carries

out join operations in a post�x order. But his analysis adopted an

oversimpli�ed space model [17]. In Section 4.2, we will give more

accurate analysis to these variants.

Equihash. Biryukov and Khovratovich introduced the Equihash

PoW scheme which is claimed to be based on Wagner’s GBP [7].

However, they de�ned GBP di�erently: Given a list L of (pseudo-

)random n-bit strings, �nd 2k distinct elements xi in L such that

⊕ixi = 0. Notice the crucial di�erence that Equihash involves only

one list rather than 2k lists in Wagner’s version.

Equihash’s algorithm. Due to the di�erence in problem de�ni-

tion, Equihash’s algorithm is also very di�erent fromWagner’s algo-

rithm. It also performs join operations iteratively, but no longer in

Session: Blockchain Security CCSW’17, November 3, 2017, Dallas, TX, USA

52

a tree fashion. Instead, each step of the Equihash algorithm is a self-

join on a single list. Augment each element in the input list L with

its o�set in L, and denote the augmented list as L(0) . The �rst k − 1

steps of the Equihash algorithm computes L(1) = join(L(0) , n
k+1

),

L(2) = join(L(1) , n
k+1

), · · · , L(k−1) = join(L(k−2) , n
k+1

), In the last

step, compute L(k) = join(L(k−1) , 2n
k+1

) and elements in L(k) are

solutions to the Equihash’s version of GBP.

The self-join operation join(L,B) checks all pairs in the input

list L, i.e., (x1,α1), (x2,α2) ∈ L, and if and if x1 ⊕ x2 cancels out the

next batch of B bits and that α1 ∩ α2 = ∅, then it adds a new entry

(x1 ⊕ x2,α1 ∪ α2) into the output list. The pairs are unordered, i.e.,

(x1 ⊕ x2,α1 ∪ α2) and (x2 ⊕ x1,α2 ∪ α1) are the same element and

is added only once.

Prior analysis of Equihash. Equihash sets the initial list size at

|L| = 2N = 2 · 2
n

k+1 . Following a similar argument to Wagner’s,

it was argued that this would preserve the expected list size at

intermediate steps, and produces 2 �nal solutions in expectation.

However, Section 3.1 shows this is not the case. In fact, under

certain parameter settings recommended by Equihash, the expected

number of solutions can be orders of magnitude smaller than 2.

The Equihash paper [7] measures time complexity in n-bit word

operations and measures space complexity in bits. We follow this

convention. The algorithm presented in the Equihash paper [7]

takes Θ(kN) time and Θ((2k + n)N) space. An improvement that

reduces space usage is later found by the Equihash designers and

Zcash miners [2] independently. We call this improvement index

pointers. We will give a simple analysis in Section 3.2 to show

that index pointers reduce Equihash’s space complexity to Θ(nN).

The Equihash paper also suggested an optimization called “index

trimming”. In Section 3.2 and Section 4.2, we discuss its interactions

with Wagner’s GBP, Equihash and index pointers.

Equihash also introduced a technique called “algorithm bind-

ing” to prevent many optimizations such as the ones outlined by

Kirchner [12]. In short, a PoW solution is considered valid only if it

carries the footprint of the iterative partial collisions, i.e, at step j,

the �rst
jn
k+1

bits should XOR to 0. We believe algorithm binding

is a great tool for PoW designs since it signi�cantly reduces the

attack vector. But we note in Section 5 that it is contradictory to

Equihash’s philosophy of “basing security on hard problems”, a

logic we do not �nd sound.

3 ANALYSIS OF EQUIHASH

The Equihash paper [7] claimed that an Equihash puzzle is an in-

stance of Wagner’s GBP, and the best algorithm to �nd a PoW

solution is an improved version of Wagner’s algorithm proposed in

2002 [17]. In Section 2, we have already pointed that the Equihash

problem is di�erent from Wagner’s GBP and problems that look

similar may have drastically di�erent complexities. In this section,

we �rst elaborate on a central di�erence between the two problems

in Section 3.1. We then provide further evidence against claiming

security based on the two problems’ similarities by showing algo-

rithmic improvements that apply to one problem but not the other

Section 3.2.

3.1 Index Set Intersection

An central issue overlooked in the Equihash paper [7] is index set

intersection. Here, the change from 2k lists to a single list plays an

important role. Recall from Section 2 that the self join operation

in Equihash must check for index set intersection, i.e., α1 ∩ α2 = ∅,

before adding a new entry to the output list. At any step in the

Equihash algorithm, if a pair of entries share an index in their index

sets, this pair must be thrown out even if their next n
k+1

bits collide.

This is because the problem (rightly so) asks for 2k distinct elements

from L, so the same element cannot be included twice.

Expected number of solutions. An immediate consequence of

index set intersection is that Equihash’s claim of 2 solutions in

expectation is incorrect. Wagner’s calculation for list size assumes

independence between entries to be joined. This holds in Wagner’s

GBP because the two entries are always formed from separate lists.

In Equihash’s case, entries in an intermediate list are correlated

if they share common indices. As k increases, the likelihood of

a pair of entries sharing indices also increases, and the expected

number of solutions deviates further from 2. The precise formula for

Equihash’s expected number of solutions is derived by [9]. For the

parameter choice in Zcash (n,k) = (200,9), the expected number

of solutions is 1.879, which luckily is not too far from 2. But for

certain parameter choices, the expected number of solutions can be

orders of magnitude smaller than 2. For example, (n,k) = (192,11),

which is among the recommended parameter settings by Equihash,

yields 2.1 × 10−7 solutions in expectation. Had Zcash chosen this

parameter setting, the actual PoW di�culty would have been orders

of magnitude higher than intended.

3.2 Index Pointers and Index Trimming

Index pointers. The index pointer trick [2] is a clever way to

store index sets. Recall that in the original Equihash algorithm in

Section 2 and [7], each entry in an intermediate list stores a set of

indices. The idea of index pointers is that, instead of storing the

entire index set α1 ∪ α2, each entry in L(i) stores two pointers to

the two source entries in the previous list L(i−1) . The full index set

can be recovered recursively by tracing the pointers all the way to

L(0) . This way, the memory space for storing indices grows linearly

in k , rather than exponentially. Below, we show that index pointers

reduce Equihash space complexity from Θ((2k + n)N) to Θ(nN).

Space reduction from index pointers.We will focus on “good”

parameter settings for Equihash in which the list size remains rela-

tively stable at around 2N . Let us consider the space consumption

of index pointers and bitstrings separately. Each pointer takes up

log2 (2N) ≈ 1 + n
k+1

bits. In step h, each entry only needs to store

the remaining n − nh
k+1

bits of the bitstring (the �rst nh
k+1

have been

canceled out and do not need to be stored). Further observe that

once we obtain L(i) , the bitstrings in L(i−1) can be discarded, but the

index pointers in L(i−1) are still needed. Therefore, after each step,

we need about 2(n
k+1
+ 1)N bits to store the extra pointers, but the

space taken up by the bitstrings drops by n
k+1

N bits. Overall, the

total space usage increases by (n
k+1
+ 2)N after each step. Initially,

the space usage is nN , so the maximum space usage during the

algorithm occurs at the end, and is roughly 2nN .

Session: Blockchain Security CCSW’17, November 3, 2017, Dallas, TX, USA

53

Implication for parameter choices. The discovery of the index

pointer technique has a big impact on the choices of Equihash pa-

rameters. For any PoW scheme, we naturally would like to increase

the required space usage (for ASIC resistance) while keeping the

runtime low. A quantity that captures this intuition is the time-space

ratioT /S . Equihash without index pointers hasT /S = Θ(k/(2k+n)).

Thus, a larger k helps decrease T /S . The Zcash project chose and

committed to (n,k) = (200,9) before the discovery of index point-

ers. Note that a larger k increases the proof size and veri�cation

time. Thus, the only reason to choose a larger k is to increase the

space usage while keeping runtime low, or equivalently, reducing

T /S (regardless of whether the Zcash team examined this metric

explicitly). In hindsight, this is almost certainly a mistake. Index

pointers reduce the space complexity to Θ(nN), so T /S = Θ(k/n).

Now a larger k hurts every metric, T /S included.

Indexpointers andWagner’s algorithm.While the index pointer

technique can also be used in Wagner’s algorithm, it does not save

space. Storing full index sets in a list at level h in the tree takes

2h n
k+1

N bits. Storing index pointers for all the 2h lists in its subtree

also takes 2h n
k+1

N bits. Another way to understand the distinction

is to notice that in Wagner’s GBP, each index in an index set comes

from a di�erent list, meaning that the pointers would always trace

back to independent entries. Thus, pointers do not save space over

full index sets.

Index trimming. Index trimming refers to the technique of storing

only a fraction of bits for each index. The Equihash paper credited

this idea to Kirchner [12], though we could not �nd any mention

of it in [12]. Regardless of its origin, index trimming is an e�ective

technique to reduce space complexity of Wagner’s algorithm. We

will provide more details on the use and analysis of index trimming

in Wagner’s algorithm in Section 4.2. For now, we consider index

trimming for Equihash. Contrary to the claims in the Equihash

paper [7], we �nd it unclear how index trimming would work

with Equihash. The �rst challenge is once again related to index

set intersection. If indices are trimmed, there is no clear method

of detecting possible index set intersections. Furthermore, in the

second pass, there is no clear way to keep working with a single list.

Instead, if we switch to Wagner’s algorithm by replicating the list

2k times (suggested in [7]), the space and time complexities of the

second pass may even exceed the �rst pass, because the �rst pass

can use index pointers while the second pass cannot. The index

pointer technique will save much more space than index trimming

and the two methods seem incompatible.

4 A POW BASED ON WAGNER’S GBP

In this section, we discuss and analyze a PoW scheme that adopts

Wagner’s version of GBP and Wagner’s algorithm. Compared to

Equihash, it has no obvious pros and cons except that it is related

to the 15-year Wagner’s GBP rather than the 2-year Equihash GBP.

Note that we state that the scheme is related toWagner’s GBP rather

than claiming security based on it. In Section 5, we explain that the

assumptions PoW schemes need are not conventional “polynomial

time” hardness assumptions, but rather the much stronger “exact

complexity” assumptions.

4.1 Description of the Scheme

The scheme applies Equihash’s algorithm binding idea to Wagner’s

GBP formulation. The input is 2k lists L1,L2, · · · ,L2k , each of size

N = 2
n

k+1 , of pseudorandom n-bit strings. A valid solution of the

scheme is a 2k -tuple (x1,x2, · · · ,x2k) (xi ∈ Li) that carries the

collision schedule of Wagner’s algorithm, i.e., ∀u,h, xu2h+1 ⊕ · · · ⊕

xu2h+2h cancels out the �rst nh
k+1

bits.

Since indices in Wagner’s algorithm correspond to entries in

separate lists, there is no notion of index set intersection. This also

means the two entries to be merged are independent. The expected

list size in Wagner’s algorithm is thus invariant under parameters

N = 2
n

k+1 and the expected number of solutions is 1.

4.2 Analysis of Wagner’s Algorithm

Post�x order. Recall from Section 2 that Wagner’s algorithm has a

tree structure. Once the two lists are joined into a list at the parent

node, the two lists at the child nodes can be deleted. If one performs

join operations level by level in the tree, then the maximum space

usage occurs towards the leaf level, and the space complexity is

Θ(2knN). But this is not the most space-e�cient algorithm.Wagner

proposed evaluating the join operations in post�x order [17]. In

other words, we prioritize join operations that are close to the root

and perform them as soon as the two input lists are ready. This

way, instead of having Θ(2k) in memory, there are at most Θ(k)

lists in memory at any time.

When analyzing space complexity, Wagner assumed that each

entry takes O (1) space, and concluded that the space complexity

under post�x order is Θ(kN) [17]. We note that the entry sizes

vary a lot based on their heights in the tree as the index sets double

while the bitstrings shrink after each join operation. Below, we

provide a more accurate space complexity analysis.

First, observe that the expected space consumption of a list out-

put by a join operation is strictly less than the sum of the two input

lists, i.e., Mem(join(L,L′)) < Mem(L) + Mem(L′). To prove this,

simply note that (1) an index set in join(L,L′) is twice as large as

an index set in L or L′, (2) a bitstring in join(L,L′) is shorter than a

bitstring in L or L′, and (3) in expectation |join(L,L′) | = |L| + |L′ |.

As a result, the maximum space usage in post�x order Wagner’s

algorithm occurs just before the last two leaf lists are joined, at

which time there are k lists in memory, one at each height. For a list

at height h in the tree, its index set has n
k+1

2h bits and its bitstring

has n − nh
k+1

bits. Summing over all the lists, we get the memory

complexity of post�x Wagner’s algorithm

N

k−1
∑

h=0

(

n

k + 1
2h + n −

nh

k + 1

)

= Θ((
n

k + 1
2k + nk)N).

Index Trimming.A good strategy is to trim each index all the way

down to 1 bit for maximum space savings. With index trimming, we

essentially run Wagner’s algorithm twice. In the �rst pass, we store

only the �rst bit of each index (so each index takes up only 1 bit as

opposed to n
k+1

bits). The output of this algorithm is the �rst bits

of 2k indices that correspond to a solution of Wagner’s GBP. Then,

one would run Wagner’s algorithm for a second pass to retrieve

the full indices in the solution. In the second pass, we only consider

Session: Blockchain Security CCSW’17, November 3, 2017, Dallas, TX, USA

54

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

0 10 20 30

Join Number

M
e

m
o

ry
 (

b
it
s
/e

n
tr

y
)

Figure 1: Memory consumption over time of Wagner’s post-

�x order algorithm with (n,k) = (120,5).

entries whose �rst index bits match the valid solution found by the

�rst pass. Thus, the input lists (at the leaves) have size N /2. This

way, the expected size of intermediate lists decrease exponentially

with their heights in the tree. Thus, the time and space complexity

of the second pass are insigni�cant compared to the �rst pass. To

compute the space complexity after applying index trimming, we

simply replace the full index size n
k+1

with 1 in the sum.

N

k−1
∑

h=0

(

2h + n −
nh

k + 1

)

= Θ((2k + nk)N).

Memory consumption over time. The memory consumption of

post�x order Wagner’s algorithm with index trimming �uctuates a

lot over time. To give a more intuitive understanding, we plot in

Figure 1 the memory consumption of post�x order Wagner’s algo-

rithm with index trimming for (n,k) = (120,5). This con�guration

gives similar maximum space usage with Zcash’s con�guration

of (200,9) with Equihash. As a comparison, Equihash’s memory

consumption would simply be a straight line between minimum

and maximum space usage (cf. Section 3.2).

Time-space ratio. For completeness, we mention that the time-

space ratio of Wagner’s algorithm (the best version known to date)

isT /S = Θ(2k/(2k+nk)).Whenk is not too large, this is comparable

to Equihash’s time-space ratio Θ(k/n). In either scheme, k needs to

be moderately large (around 4 or 5) to thwart time-space trade-o�

attacks, but there is little reason to choose k much larger than that

as it hurts every e�ciency metric.

5 SECURITY ASSUMPTIONS OF POW

In this section, we discuss the security assumptions that PoW

schemes rely on. In previous sections, we argued that Equihash’s

security has only been examined for 2 years, while the scheme in

Section 4 traces back to the 15-year old Wagner’s GBP. However,

we still consider both to be heuristic schemes, not based on the

duration of 2 or 15 years, but rather because we do not see a good

argument for basing PoW security on hard problems to begin with.

First and foremost, the type of assumptions PoW schemes require

are very di�erent from traditional hardness assumptions. Using

factoring as an example, a traditional hardness assumption states:

“there exists no probabilistic polynomial time algorithm for fac-

toring”. A cryptographic primitive relying on the above hardness

assumption will remain secure even if a polynomial-factor improve-

ment is later found for factoring. In contrast, a PoW scheme needs

an assumption on the precise complexity of a problem, e.g., “the

best algorithm known to date for problem X is indeed the best pos-

sible algorithm for problem X”. This is clearly much stronger than

a “polynomial time” hardness assumption. And any algorithmic

improvement (even a sublinear or logarithmic one) to problem X

constitutes a break for the PoW scheme. Therefore, strictly speaking,

the discovery of the index pointer technique has already rendered

Equihash broken once.

Also note that there is no reason to require problem X to be hard

(e.g., super polynomial). In fact, the Equihash paper has mentioned

a naïve construction that relies on a hard problem but turns out to

be insecure. It then introduces the nice idea of algorithm binding,

which improves security by constraining the Equihash puzzle. This

turned the puzzle into an easy problem with a quasi-linear solution.

Indeed, PoW schemes ideally want PoWs with matching (or close)

upper and lower bounds. Hard problems are usually the opposite

given our limited understanding of them. Thus, it should not be

surprising that a PoW scheme achieves better security by avoiding

hard problems or turning them into easier problems.

6 CONCLUSION

In this paper, we revisited the security claims and arguments of

Equihash. We explained that Equihash’s security does not follow

from Wagner’s GBP and remarked on the limitations of the general

idea of basing PoW security on hard problems. Overall, we still �nd

Equihash to be a simple and elegant memory-hard PoW heuristic

scheme, and still consider it a good choice for practical protocols.

But we believe it is important to be aware of its heuristic security.

If provable memory hardness is desired, then one may want to look

into proof of space protocols instead.

REFERENCES
[1] Antminer S9. Bitmain, https://shop.bitmain.com/market.htm?name=antminer_

s9_asic_bitcoin_miner. Accessed: 2017-02-04.
[2] Equihash-xenon. https://github.com/xenoncat/equihash-xenon.
[3] Ethash. https://github.com/ethereum/wiki/wiki/Ethash. Accessed: 2017-08-04.
[4] David G. Andersen. Exploiting time-memory tradeo�s in cuckoo cycle, 2014. (Ac-

cessed August 2016) https://www.cs.cmu.edu/ dga/crypto/cuckoo/analysis.pdf.
[5] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of

space: when space is of the essence. In Security and Cryptography for Networks,
pages 538–557. Springer, 2014.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing e�cient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993.

[7] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric proof-of-work
based on the generalized birthday problem. In NDSS, 2016.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Cli�ord Stein.
Introduction to algorithms. MIT press, 2009.

[9] Srinivas Devadas, Ling Ren, and Hanshen Xiao. On iterative collision search for
lpn and subset sum. In Theory of Cryptography. Springer, 2017.

[10] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Advances in Cryptology–CRYPTO 1992, pages 139–147. Springer, 1992.

[11] Alex Biryukov Dmitry Khovratovich. Egalitarian computing. In NDSS, 2016.
[12] Paul Kirchner. Improved generalized birthday attack, 2011.
[13] Daniel Larimer. Momentum: a memory-hard proof-of-work via �nding birthday

collisions.
[14] Colin Percival. Stronger key derivation via sequential memory-hard functions,

2009.
[15] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory

of Cryptography, pages 262–285. Springer, 2016.
[16] John Tromp. Cuckoo cycle: a memory-hard proof-of-work system, 2014.
[17] David Wagner. A generalized birthday problem. In Annual International Cryptol-

ogy Conference, pages 288–304. Springer, 2002.

Session: Blockchain Security CCSW’17, November 3, 2017, Dallas, TX, USA

55

